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Abstract

A stable mixture distribution is presented as a model for intermediate range financial logarithmic returns. The model i<
developedfrom the observationof high frequency one minute market returns, which can be well modeled by random noise generated by
a stabledistribution multiplied by a non-randommarket parameter which is a measure of market volatility. The stable distribution has
an « parameter of approximately 1.8, for the actively traded ETF, SPY. The daily time seriesof the scale factor showsstrong serial
dependence. Neverthelessthe daily scale factor over periods of months to years is well fit by a lognormal distribution. Thus
intermediate term market simulation and risk modeling can be accomplishedwith the product of a lognormal random variable and a
standardized stable random variable. Although thereis not a closed formula for the stable distribution, the mixture distribution and
density functions can be approximated by numerical integration. Where ¢ is the stable characteristic function and A is a lognormal
density, the mixture characteristicfunction can be given by mcf.
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skewness parameter, y is the median of the scale factor distribution, ¢ is a location parameter and o is the shape parameter of the
lognormal distribution fitting the varying scale factor. Numerically it is difficult to fit these parameters to data, but with the large
samplesizesprovided by intraday minute data, @ can be approximated using the generalized extreme val ue distribution, and maxima of
partitioneddata. « can aso be approximatedby sequentially fitting each day'sdata; thisvalue is surprisingly consistent,or by rescaling
each day'sdata by the stabley for the day and doing a stablefit to the rescaleddata. The parametersfor lower frequency daily returns
can be approximated by taking advantage of the serial dependence, estimating the scale factor for partitioned data and rescaling the
partitions.

The presentation shows evidencefor the model with one minute returns of the SPY ETF collectedsince July 2007. This time

frameincludesa rather remarkablevariation in market volatility, yet the model seemsto remainvalid. Calculationsof the functionsare
demonstrated with Mathematica, and John Nolan's program, STABLE. A web resource of programsin Mathematica will be made
available,
The model is attractivesinceit can account for all the stylizedfactsabout financial returnsand be explainedas arising from the behavior
of a continuous double auction market model that has limit order book return distributionswith heavy power-tails, which over very
short times measured in secondsyield independent returns obeying the generalized central limit theorem. The varying scale factor or
volatility accountsfor the serial dependenceseen in the absolute value of market returns. The density of the mixture distributionhas a
higher peak than a stable distribution with the same parameters, a, 3, y, but on the tails it asymptotically approaches a stable
distribution. Thusit is differentfrom a truncated stable distribution. Sums of independentrandom variablesfrom this distributionwill
converge to a stable distribution, but such behavior may not be observed in financial data because the scaling variables are not
independent.

AX, p, o) =

Introduction

We propose a model for financial markets that consists of random noise generated by a stable distribution multiplied by a scale factor.
The scale factor variable of the model is not random and has a structure with strong serial dependence; it is a signal given off by the

market, reflecting the market's volatility. The simple description in the first two sentences can account for all the stylized facts about

financial returns (differencesof logarithms of prices) which have been nicely laid out in Quantitative Risk Management as follows[1]:
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"(1) Returnseriesarenoti.i.d. athough they show little serial correlation.
(2) Seriesof absolute or squared returns show profound serial correlation.
(3) Conditional expectedreturns are closeto zero.

(4) Volatility appearsto vary over time.
(5) Return seriesareleptokurtic or heavy-tailed.
(6) Extremereturnsappear in clusters.”

As we proceed we will point out the reasons the stylized facts must be a consequenceof such amodel. We will aso attempt to tie the
model to the continuous double auction mechanism of price formation. The model is data driven. We have studied market returns with
stable distributions for more than eight years and have found as have othersthat the fit is reasonably good except at the tails. When the
tails from market return data are studied in isolation they consistently show atail exponent that is too high for a stable regime. Looking
closely at the stable fits to financial logarithmic returns, we find that market returns have more density in the central part of the distribu-
tion than the stable fit and that the tail exponent found by a stable fit is lower than slope found on the log-log plot of the empirical
distribution function. Thus the assumption of a stationary stable distribution for market returns results in finding a set of parameters that
overestimatesextremeevents. However, if we rescale the data by the non-random volatility component, we come up with an estimate of
the tail exponent that is considerably higher than that found by the stationary stable assumption; such a model will be less likely to
overestimateextremereturns.

We have observed that for time intervals of months to years, the histogram of the scaling variableis well fit by alognormal distribution.
We develop the lognormally scaled stable distribution as a stable mixture distribution. Since we know the scaling variable is not
random, this is something of a thought experiment to explorethe non-stationary stable behavior, but it may possibly be useful to simulate
risk. Thelognormal histogram s likely a consegquenceof the pattern of decay of the serial dependent structure that we will demonstrate.

Stable Distributions

For the analysis, we chose to use stable distributions, because they include the heavy tails consistent with the stylized fact (5), and our
experiencehas been that although the stable fit is not idedl, it is better than that for most other commonly used continuous distributions.
Stable distributions as a class have the attractive property that the distribution of sums of random variables from a stable distribution
retain the same shape and skewness, athough the summed distribution will change its scale and location parameters. Further they are
the only class of statistical distributions with this property. The Normal distribution is one special member of the class as are the Cauchy
and Levy distributions. Thesethree forms, unfortunately, are the only members of the group that have simple mathematical formulas.

Stable distributions are the limiting distributions of sums of independent and identically distributed (i.i.d.) random variables. When the
identically distributed random variables arise from a distribution with light tails, where the variance exists, the Normal distributionis the
limiting distribution. Thisis the classical central limit theorem. When tails of the starting distribution are heavy, varianceis infinite. In
this case we observe the generalized central limit theorem for sums of random variables and the limiting distribution is a general stable
distribution with shape parameter, @ < 2. The Normal distribution has tails that are light. All other members of the class have heavier
tails ranging from slightly heavier than to Normal to extreme. TheNormal distribution is the only distribution of the class for which the
second moment and variance exist. For al other stable distributions varianceis infinite. The characteristic function, ¢(t), for the general
caseisgiveninequation (1). Intheanalysisof financial data we are not concernedwith the case wherea = 1.
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Stable distributions are characterized by four parameters.
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«a is the shape parameter with a domain (0, 2], when it is 2, the distribution is the Normal distribution. When 1 < a < 2, the mean or
expectation of the distribution exists. All financial market return data appear to be in this range of «.

B is the skewness parameter, domain, [-1, 1], defining the asymmetry of the distribution. When g = 1, it is maximally skewed to the right
with a heavy tail, and the left tail is extremely light. The oppositeistruewhen g =-1. At 8 =0, the distribution is symmetric. Asa
increasestoward 2, the effect of the skewness parameter diminishesand at « = 2, the distribution is the symmetric Normal distribution.

v, domain (0, o), is the scale parameter. We will be suggesting this as a measure of volatility if « is constant or confined to a narrow
range.

¢ € Redls, isthelocation parameter, and in the parameterization designated by the characteristic function ¢(t) above, it is the expectation
of the distribution, when a > 1.

The summation-stability property has the interesting feature that it is possible to calculate the parameters of the distribution for any
number of sums of random variables, if one knows the original stable distribution parameters. Thus the distributions are attractive for
financial logarithmic returns, where the sum of a series of returns is the return for the series interval. Stable distributions thus are
scalable in the sense that if a process arises from the sum of many small events, the summed event has a similar distribution. For
financial market prices where price changes may occur thousands of timesin a minute, it would be very convenient if the process were
stable and stationary, in which case probabilities for events could be calculated across many intervals. Unfortunately thereis no reason to
believethat financial markets should output data in a distribution with stationary parameters.

Continuous Double Auction

Since we can easily obtain a large collection of financial return events, we tend to think of these as a random sample. But financia
events are generated sequentially by a continuous double auction (CDA) system; so our model also needs to be consistent with this
process of price formation[2]. In the past human market makers matched buy and sell orders and kept tract of the limit order books.
Now market participants have access to data faster than the human brain can process the information, but they also have computersthat
can be programmed with algorithms to act faster than the information arrives; most orders are matched by computer algorithmicals. We
know some of the rules, but we don't necessarily know exactly how the CDA is programmed, so we will consider it a black box and try to
make very few assumptions. The graphic shows what the structure of ordersin the market black box might look like at an instant when
the market priceis 50.

Market Market
Buy OrdersSell Orders

LimitBuy Orders Limit Sell Orders

Y Y

I Market Black Box
47 48 49 50 51 52 53

Market Transactions
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Figurel

Ordersflow into the system in two types, market orders which are executed as soon as possible within a very short time interval and limit
orders which are sorted by price and time into an order database. The limit orders are filled on a first comefirst serve basis when the
price limit is reached in the market. When numbers of buy and sell market orders are equally matched, the orders are executed at the
current market price and each party is charged a commission on top of the market price. The market price does not change and the return
over thisinterval is zero. If the market ordersare not equally matched, then the unmatched buy or sell orders are filled in the respective
sell or buy order books. The price changes, generating positive or negativereturns. |If the implied return structure of the order books has
heavy power tails, then the continuous double auction will produce heavy tailed returns.

Thereis alag in transmission of the executed price information, across networks, and prices may be executed in different markets and on
different servers. So for some brief interval which now may be measured in hundreds of millisecondsto several seconds, onetrader is not
aware of the actions of other traders; thereis also alag in the execution of orders. Over some brief interval actions of traders are indepen-
dent because of the informationlag. The CDA process theoretically also involvesboth a buyer and a seller; over some defined interval,
as the price changes, one of the parties will have made an inferior choice. The probability of making a better or poorer choicein the
transaction is almost surely very close to 1/2, adding another element of randomness to the transactions. Thus over very short time
frames of several seconds, market prices and the implied returns are independent.

The structure of the limit order booksis also dynamic with orders being added and removed as the price changes. The structure of the
limit order book, especialy in the tails will likely remain relatively constant over some interval of time. Over the interval that this
structure remains constant, returnswill be identically distributed.

Sums of independent identically distributed random variables convergeto a stable distribution. But over periods of time longer than a
few seconds trading behavior is not independent and it is not likely identically distributed over long periods of time. Thereforeit is not
surprising that we find the parameters of the convergent stable distributions are not stationary. On a minute by minute basis, we expect
the skewness parameter, 3, to be varying wildly as this will directly follow the ratios of orders executed in the buy and sell market order
booksover theinterval. §, the mean, is expectedto be closeto zero by the stylized fact (3); so in looking at stable fitsto the daily data we
will be most interested in the structure of the @ and y parameters of the stable distribution.

Data

For our investigation we began to collect prospectively one-minute price data on the SPY exchange traded fund (ETF) since July 2007.
We also collected at the same time data on 50 other securities with similar results, but will present here only the SPY data. The SPY
ETFisidea for study sinceit is heavily traded and has a relatively large price to the tick size of one cent. These properties assure that
there will be enough high resolution returns to analyze and the calculated returns will not have too much granularity created by the
discretetick size.

The data points are at one minute intervals during the regular trading day of New Y ork markets. The data do not include the before or
after market trading sessions. Each day's data are concatenated and the log returns are calculated for the entire series. Concatenationin
this manner createsawider step in price and the calculated return at each day's open than is seen from minute to minute during the rest of
the day, but no priceinformationislost. The Figure 2 shows the closing price each day for the data set.
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Datafrom Thu 5 Jul 2007 through Fri 22 May 20009.

The one minute logarithmic returns in Figure 3 show the clustering and variation of volatility that is typical of other financia data as
noted in stylized facts (4) and (6).
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Figure 4 shows the autocorrelation function of the returns. The blue plot is the autocorrelation of the raw returns, there is no serial
correlation, consistent with the stylized fact (1). Thered plot is the autocorrelation plot of the absolute value of the log returns, which
revealsavery interesting structure. The plot coversa lag of 15 days of one-minutereturns. Thetall spikes represent the larger returns
experienced from the close of one market day to the open of the next. But thereis also an intraday variation, which reflects higher
volatility at the open and close of each market day. The daily variations are superimposed on a slowly decay of the autocorrelation
functionthat persists for many months. Clearly thereis significant serial dependenceto the absolute value of the returns, stylized fact (2).
When we take the absolute value of returns, we are in a sense looking at volatility at its most elementary level. Sincethereis a clear
daily cyclein the data, we decided to partition the data into days to see what we could learn from analysis of the daysindividually.
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Daily Data Structure

To examinethis large data set more closely we, partitioned the data into days and fit each day's returns to a stable distribution[9]. The
mean of the parametersis shown. The averagefit to each day's data gives significantly higher a than we obtain, taking the data set as a
whole.

o B Y o)
1.81028 0. 0379846 0. 000487981 -1.28519x 1077

Theplot, Figure 5, shows that o on a daily basis clearly clustering to significantly higher than the value found when the data are eval u-
ated as awhole. Thered lines are the 95 % confidenceinterval s for the maximum likelihood fit method, based on a usual sample size of
391. (Note: the days beforesome holidaysare shorter; the sample sizeis considerably smaller on these days.)
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The daily structure of the stable scale factor, y, in Figure 6 is very interesting; used in this way y can be thought of as a measure of
volatility. Clearly volatility varies over time, stylized fact (4). The plot shows the scale measured two ways, in blue is the maximum
likelihood fit and in red is a very fast stable characteristic function method, which will be used throughout the presentation. The results
are very close by both methods. Thefast characteristic method is shown in the appendix.
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The structure of the 8 parameter appears to be fairly random over awide range. § picks up same pattern of volatility as the scale factor y.
At this point we can say that the logarithmic returns are not independent, and most of the serial dependency seemsto be carried in the y
parameter; the stable scale factor. Figure 8 shows the very strong serial dependencein the daily y values; sincey is the scale factor of the
stable distribution, the very strong serial dependent structure accounts for stylized fact (6), clustering of volatility. @ seemsto be confined
to a narrow range, mostly within the confidenceintervals of the method. Sincey is the scale factor of the distribution, we can standardize
the distribution to a stable distribution with y = 1, by dividing by each day's return data by the scale factor for the day. When we rescale
in this fashion, we will also removethe volatility seenin the plot of the § parameter in Figure 7.
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Rescaled Data
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Thefinding that « for the daily data is relatively confined to a narrow range and the finding that y clearly shows serial dependenceand a
wide range of variation suggests the idea that markets might be modeled by a non-stationary stable distribution with avarying y parame-
ter. Sincey is the scale parameter of the distribution, the data can be rescaled simply by dividing by the gamma for each day. Figure 9

shows the autocorrelation of the raw absolute log returns in blue and same returns rescaled (in red) by dividing each day's returns by the
stable scale factor, v, calculated from the stable fit to each days returns. This removesthe sequential daily serial dependencein the data,
leaving the intraday cycleand the inter-day jumps. We could removethese as well, but the effectsare smaller and they are cyclical for

each day. Itisimportant to remember that the scale factor is constantly changing; we are not dealing with a stationary stable distribution

evenwithin a day.
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Hereis a stable fit to therescaled data. « is significantly higher than in thefit to the raw minute data. vy is approximately 1.0 as should
be expected since each day's data was divided by the scale factor calculated for that day. It is not one exactly because we left the intra

and inter day cyclesalone.
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The stable distribution fit to the rescaled data is excellent. Figure 11 shows a log-log plot (rescaled data on Ieft), which fits the data to
the stable distribution function with parameters from the maximum likelihood fit. There are five plots in this illustration, three of which
are lines representing the tails of distributions implied by parameters and two of which are plots of actual data. To aign the tails, the
absolute value of the left tail is shown in blue; the right tail is shown as 1 - probability in red. Displayed this way a stable distribution
with a < 2, reflectslinear parallel tails with the slope of minus @. If 8 is zerothetails are superimposed. Thetail of aNormal distribu-
tion, defined by its first two moments calculated from the sample, is shown in green and does not have linear tails. The dots show the
data points of the two respectivetails. In this representation, stable distributions have a characteristic shape with parallel tails that
becomelinear when a+2; except when 8 = +1, in which case the lighter tail is not linear. The data in the tails matches the tail exponent
very closely for the rescaled data, but in the fit to the raw data, the calculated a is smaller than the slope of the data in the tails. Thereis
still some excess central mass in the histogram caused by an excess of zero returnsin the minute data. The phenomenon may be either
due to very low volume on those minutes so that the price does not change, or it may be due to the granularity of the tick size, showing
pricesthat changed but returned to the same value by the end of the minute, because of trades being at one cent priceintervals.
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From these observationswe form the hypothesisthat financial market returns can be modeled by a non-stationary stable distribution with
a scale factor which is continuously changing. The pattern of the change can itself be studied. The scale factor appears to account for
amost all of the serial dependent structure seen in market return data. Over intervals as brief as a day, market behavior can be modeled
by a volatility parameter multiplied by random a-stable noise. The volatility parameter, measured by stable y, conveysnon-random
market information. The stable shape parameter, a, is relatively stationary with a value of about 1.8. Most other financial market models
presume noise and a market signal are added together, the consequences of multiplying signal and noise are quite different. The heavy-
tailed noise is multiplied by the volatility parameter, so events can be quite extreme and extreme events will cluster because of the
persistencein the scaling volatility parameter, y.

Structure of Volatility

The Figure 12 shows the serial daily volatility and the price of the SPY ETF along with the CBOE VIX volatility index. Thereis a
genera inverse relationship between the trend in price and that of volatility, both plots exhibit serial dependence, such that the best
predictor of the next priceis the last price and the same can be said of the volatility measure. The measure of stable y closely parallels
the popular volatility index, VIX. Thevolatility increasesin late 2008 were dramatic and not predictable from the preceding data, yet the
shape parameter of the stable distribution describing the daily returns remained relatively constant. We also note that the skewness
parameter, 8, and the location parameter, 6 are small so that volatility can reasonably be measured by the stable scale parameter y. We
have shown that a stable distribution accurately describes data which has been rescaled by the value of y. The structure of y, can perhaps
be studied by time-seriesanalysis, but it is hard to imagine that any causal model could generate the rise in volatility that occurredin the
Fall of 2008. Traditionally standard deviation has been used as a measure of volatility; we should point out that a similar graph could
also be made using sample standard deviation for each day, but such a calculation implicitly assumes that the second moment of the
distribution exists and that the distribution has light tails. In choosing a stable distribution scale factor, we have not excluded the
possibility of finding a non-stationary Normal distribution in the analysis. The Normal assumption simply is not supported by the data,
which are showing « of about 1.8.
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Data from Thu 5 Jul 2007 through Fri 22 May 2009.

SPY - VIX - Gamma
Blus — Gold — Read

5 - . - - - . —30.0028
150 ﬁ“xmn J0.0023
[ M"‘m ‘,@f‘"‘\m Losore
e Jooo1s B
ﬁ

VI or BPY Price

L
L=
TT—TT

“ V Wﬁﬂm {0.0000
ia*dw-;;e*ﬁ'*ﬁﬁ‘n‘w”lgw o ,W Iu?i:%fﬁ":'":':':'i

2008

2000
Figure 12

In Figure 13, we note a relationship with volumeand stable y, but we will not pursue that in this presentation.
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Although the volatility data clearly are not random, before September 2008, we found a remarkably good fit of the daily volatility to a
lognormal distribution. This suggested that we might use a stable mixture distribution with the y parameter distributed lognormally to
give us amodel distribution to represent financial returns over rather long time frames. Thelognormal fit broke down with the marked
increase in market volatility in the Fall of 2008. But subsequently it seems that we can divide the market data into two periods before
and after the beginning of September 2008 and obtain good fits to a lognormal distribution--the differenceis that the parameters have
changed.
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Although we know that the daily scale data are not random or independent, the histogram and fits to a lognormal distribution are very
good in the partitioned samples. We believethis tells us something about the decay structure of volatility, which seemsto be character-
ized by a series of rapid rises and slow decaysthat have a logarithmic relationship to y. Thefit to the lognormal distribution led us to
investigate the behavior of alognormally scaled stable mixture distribution with the hope that it might be useful over the long term to
describedaily data. Our thought was that over a sufficientlylong interval, the behavior of the scale factor y, might appear more random.

Lognormally Scaled Stable Distribution

Thelognormally scaled stable mixture distribution (LNS) is devel oped to describe what we have found empirically. It can be generated
as the product of alognormal random variable and a stable random variable. Sincethe stable distribution does not have a closed density,
we will first describeit as a characteristic function. This function will have five parameters, the usual «a, 8, v, and ¢ of stable distribu-
tions plus o, representing the standard deviation of the distribution of Log[y], wherey is a random variable, a scale factor that multiplies
the stable distribution. We have shown that the distribution of the scale factor is in fact not random: thereis strong serial dependence,
but over many months to yearsthe events described by measuring this parameter are well fit by alognormal distribution, so this distribu-
tion may be useful to model financial market risk over monthsto years.
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Let A (x, 4, o) bethelognormal density function.
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é(t, a, B) isthe standardized stable characteristic function. (1-parameterizationwill be used for financial work.)[3]
8, 0, = o (s ®

A characteristic functionfor a mixed distribution of characteristic functionsis given by[4]:

n
Do
i=1

Where wi(t) is a characteristic function and

n
Zpi=1

i=1

Extending this to a single characteristic function with a varying scale factor, where s > 0.

n
Z pi w(s 1)
i=1

We substitute the integral of the lognormal density function for the weighted sum, yielding the LNS characteristic function, Inscf, where s
> 0; y isthe median of the scale factor distribution. (Note: the median of equation (2) isat x = e*.)

Inscf(t, @, B, 7, o):f/\(s, log(y), o) ¢(st, @, B)ds 4
0
Adding alocation parameter, we have a five parameter characteristic function.
Inscf(t, @, B, 7, o, 6) = cmfA(s, log(y), o) é(st, a, B)ds (5)
0

Since we have numerical approximations for the stable distribution, we can also compute by numerical integration the distribution
function and density functions[5]. Where scdf(x, a, B, v, d) is the stable distribution function, the distribution function of our LNS
becomes:

Inscdf(x, @, B, 7, o, 8) = ‘fyscdf(x, a, B, S, OAS log(y), o) ds (6)
0

Likewisethe LNSdensity is shown below, where spdf(X, @, 8, v, ) is the stable density function.

Inspdf(x, @, B, y, o, 6) = fspdf(x, @, B, s, 6)AGS, log(y), o) ds @
0

Plots of the distribution functionwith parameters, {«a, 8, v, o, 6}.

Plots of the LNS and stable density functionswith the same parameters, { @, 8, v, (o), 6}. Thestable functionsare in the lighter colors.
For the same y, the LNSwill have ataller mode, and when thereis skewness the LNSwill appear |ess skewed.
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LIS and Stable Density Functions
{13,1,1, (0.3), 0} Red
{1.3,0,1,00.3), 0} Blue

T T
Figure 16
Thethree dimensional plot shows the LNSfor arange of the parameter o from 0.1 to 1, for parameters{«, 3, v, 6} ={1.5, 1, 1, O}.

Figure 17

As o approachesthe limit zero, the distribution becomesa pure stable distribution with scale factor y.

LNS Tail Behavior

Thetail behavior of the stable and LNS distributions asymptotically is similar as x increases, but the linearity on the log-log plot arises
moreslowly in the LNSdistribution. Theright side of density plots are shown. The next three plots show the effect of increasing o. As
o increases, it takes longer for the log-log linear phase of tail behavior to take hold.
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Figure 18

Figure 19 shows heavy tail of the maximally skewed density for the same «, 1.5 on theright and the light tail on the | eft.

Stable Blue Stable Blue
LNS Red LNSRed
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0.200 F : ‘ ] 0.300
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0.020 - 1 0.100}
0.010 E o070k
0.005 E
0.050 -
0.002 - ]
0.001+ q 0.030
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Figure 19

The tail behavior of the LNS distribution asymptotically has a Pareto tail behavior proportiona to the stable distribution tail behavior
fromwhich it is derived. The proof is straight forward using the dominant term of the stable series expansion[6] to replace the stable
distribution function in equation(6) and integrating the product of this term and the lognormal density over the range of the lognormal
density.

Thus sums of LNS random variables have a limiting distribution that is a pure stable distribution by the generalized central limit theo-
rem, but this might take sums of large numbers of random variables. It can be found from examining the LNS characteristic function that
the properties of the moments of the LNS are similar to those of stable distributions, namely that the variance exists at a = 2; the expecta
tion existswhen o > 1.

In summary, the LNS distribution has another shape parameter, o, that squeezes the middle of the distribution, causing a higher peak to
the mode, and delaysthe stable tail behavior which occursfurther from the mode of the distribution. Ultimately the distribution is heavy-
tailed with the same tail exponent as the stable distribution fromwhich it is derived.

Extreme Value Analysis

We have shown that the LNS distribution has the same tail behavior as a stable distribution but that it occurs further from the mode.
This suggests that with our large data set we could calculate the tail exponent using the generalized extremevalue distribution[7].

Thegeneralized extremevalue distribution in standardized formis given below.

e+ x6™: wherel + x& > 0. (8)

Thisfunctionhas alimit at ¢ = 0, so it is continuous over the entirerange of £.
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lim g XE+)E = e
tim ©

A three parameter form of the distribution is needed for fitting, where i is the location parameter and o > 0 is the scale parameter, by
substituting.

X—p
X> —
a
Thefull parameterization of the distribution function:
oW \UE X—pé
GEV(X, &, o, p) = A where +1>0and¢+0
) 7 (10)
GEV(X, & o, p) = e 7 . whereé = 0
Thedensity functionis.
S(SE L) (x-p) £ _1_,%
R ot I
gev(x, &, o, p) = ; where +1>0andé#0
o o (11)
e?_’T
gev(x, §, o, p) = ; Where£=10
o

For maximum likelihood fitting, the correspondinglog densities have an explicit form with the same corresponding parameter restrictions:

_1/§
+1] - log(o) — ; where +1>0andé+£0
3 o (12)

(x-n) ¢
X-wé (§+1)'°9( +1) X-wé

loggev(x, &, o, p) = -[

T
X—p px
—e~+ —log(o); whereé==0

loggev(x, &, o, p) = =
o

For the calculations we use equations (12) above. We partitioned the data into days and selected the maximum values from each day's
morning and afternoon events and fit this distribution to a generalized extremeva ue distribution (gev). To calculatethe left tail, we take
the negative value of the minima. The¢ parameter of the gev is correspondsto 1/ of a stable distribution; thus we have another method
of calculating a.

In doing the calculation, we have found that we run into the same difficulty as we experienced cal culating the distribution of the scale
factors-- the parameters have changed dramatically since the beginning of September of 2008; so we have divided the sample into two
parts. First isthedatafrom July 2007 through August 2008. The calculation of « is about the same for each tail and again higher than
we observewhen we attempt a stationary stable calculation for the data.

Eefore September 2008

GEV Fit to Left Tail Data GEV Fit to Right Tail Data

800 pr— - 600 pr
500 F 500
40 i Caloulsted o 1. 86121, ] 400 F Caloulated o 1. 7702, ]

100 F E 100 [ L
o E e i)

0.0 0.01 0.02 0.03 0.04 0.000 0.005 0.010 0.015 0.020 0.025

Figure 20

Figure 21 shows the calculations for the data since the start of September 2008. The sample sizeis smaller; on the left tail we are not yet
seeing tail behavior consistent with our daily stable analysis.
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After September 1, 2008
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Fitting the LNS to a Daily Time Series

Hereisthe daily time series of pricesfor the SPY ETF sinceit began trading in 1993.

SPY Prices

_| T T T T T T T T T T T T T T T T ]
140 ]
w0 “I v‘\ ]
[ | |

S Aﬂ‘ i
o | ]
Frys ]
-| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

1005 2000 2005

Figurs 22
Data from Fri 29 Jan 1993 through Thu 21 May 2009.
So far we do not have a good method to directly fit data to a LNS distribution to data, so we use a few tricks, taking advantage of the
known serial dependent structure of the scale factor. First we partition the data into sections of 30 trading days and calculate the scale

factor for each of the partitions. Below we show the structure of the resulting scale factorsand the fit to alognormal distribution. Thefit
is taken using the median and a quantile method for the shape parameter.
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SPY ¥ Lognormal Fit
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Figurs 23

We then take the scale factors from each partition and rescal e the data; stable parameters are fit to the rescaled data, resulting in a higher
a, than we would get using a stationary stable fit. The parameterswe use in the fina fit are @ and 8 from the rescaled stable calculation,
v and o are taken from the above fit to the scale factorsat 30 day intervals, and ¢ is the mean of all the returns. A Fast Fourier Trans
form method is used to calculate the LNS density as we will reuse this later to quickly calculate the log likelihood of the fit parameters,

{(l/,ﬁ, Y, 0, 6}

LN3 Fit SPY Stable Fit SPY
1.82507, —0.0333620, 0.00570443, 0.502975, 0.000241035} {1.55646, —0.162841, 0.00614333, —0.0000333215}
§:I T T T L L L L L L L 5’:' ; T T T T T R
50 sof
40k A
sof E
wf wl
wh wf
ok e .- ok :
—010  -0.05 0.00 0.05 0.10 —0.10 005 0.00 0.05 0.10

Figure 24

Comparing the two fits, we see that the LNSfit handles the peak of the distribution better and the tail exponent « is higher so that the
parameters would be less likely to over-estimate extreme eventsiif they are used for smulation. Below, the log likelihood is calculated
for the stable fit and the LNSfit which is higher.

Stablelog likelihood: 12682.9
LogNormal Stablelog likelihood: 12700.2

Below is a simulation with LNS random variables, using the parameters we calculated, cumulatively summed and converted back to
prices. The simulation assumes both the lognormal and the stable random variables are independent, thus the simulated returns do not
show clustering seen in true financial returns.
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Price Simulation with SPY Parameters and Starting Price

Logarithmic Return Simulation
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LNS Random Variables

Although the LNS distribution and density functions are difficult to calculate, it is relatively easy to generate random variables. In the
demonstration we use Mathematica's built in method for the lognormal random variable, and John Nolan's STABLE MathLink interface,
although the algorithm to generate stable random variables directly is straight forward[9]. Thealgorithm is shown below.

LNStableRV[n_, a , B - 0, ¥y - 1, o, 6 - 0, iparam_Integer: 1] := RandomReal[LogNormalDis-
tribution[Log[¥], o], n] StableRandom[n, a, B, 1, O, iparam] + &;

We can generate a million LNS random variables in about a second, with parameters{«, 8, v, o, 6} = {1.8, 0.1, 0.006, 0.5, 0.0002} .
The histogram and density with a LNSfit and a stable fit. Aswe have seen with financial data the stable fit has less central density than
the LNS sample.

L3 Fit Stable Fit
50 F
40k
30F
J-:l:-
10
—{0.10 —0.05 0.00 0.05 0.10 010 —0.05 0.00 0.05 0.10

Figure 26

When the sample s fit to a pure stable distribution, we get parameters shown above the graphs, Figure 27. « as our previous experience
has indicated is considerably smaller than the tail exponentin the original random variables. We cannot rescale the data, in the same
manner as we did for the long series of SPY, because thereis no serial dependencein our random sample. With this very large sample,
we can show that the stable tail behavior is present upon summation of the random variables. The sample was partitioned into 1000
segments each of which is summed. The stable fit shows that sums of LNS random variables do indeed convergeto a stable distribution
with the proper tail exponent.
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Figure 27
Discussion

We have examined logarithmic return data at one-minuteintervals. We have found that over time frames as long as a day, these returns
are adequately fit by a stationary stable distribution, although it is possible to show that the scale factor is continuously varying, this
variation over the course of a day is smaller than the variation found between dayq8]. Between days the magnitude of the scale factor
variation becomes quite significant; it shows a high degree of autocorrelation. It is not random. It appears that financial market behavior
for the SPY dataset can be modeled by a component of random alpha stable noise, @ = 1.8, multiplied by a scale factor, y, which is
constantly varying with a pattern of strong serial dependence. Over the time interval we have studied, the scale factor, v, has varied 10
fold.

In time series notation we suggest a model of financial returns, where X; is the return over interval t.

t
xt=2xi; ie{l 2 ..t} Xo=0 (13)
i=1

Xi =G Z (14)

Z; is a standardized stable random variable with parameters (o, B). ¢ effectivelyis the stable scale parameter for interval, i. If the
distribution of ¢; is constrained sufficiently then the tail behavior of the mixture distribution should convergeto that of the stable distribu-
tion at the extremesas was shown for the lognormal distribution. ¢; could be studied with time series methods but we think it unlikely
that any causal method would predict the dramatic increase in magnitude that was seen in October 2008. We have shown that ¢; has a
histogram and fits over selected time frames to a lognormal distribution, but that it has strong serial dependence; consequently the
product with a random variable leaves a situation where X; is not random. Although we created a mixture distribution, the LNS, to
explore a random stable mixture, the strong serial dependencein ¢; invalidates its use except possibly over long time frames. The
lognormal relationship may be useful in studying the serial decay of volatility from a peak which may be a function of Log(c;). Figure 28
shows a power tail model for decay of volatility since October 2008, based on daily calculations of y, a day trader would a so have to be
concerned about the intraday cyclein volatility.
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In this model, we are assuming that the o parameter of the stable distribution is relatively constant. We have shown that the @ compo-
nent, of the market model can be measured over longer time frames; it can be analyzed using the generalized extreme value distribution,
but with less success than measuring « by rescaling the data. The results of such analysis confirm the heavy-tailed nature of the continu-
ous double auction model, and the magnitude of the shape parameter obtained by this method is close to that found by fitting intraday
datato a stable distribution. 1t seems reasonable to measure a over along time frame and simplify the analysis with the assumption that
it is constant over theinterval.

We have presented a mixture distribution, the lognormally scaled stable distribution (LNS), mainly as a theoretical constructionwith the
knowledge that the assumption of independencefor the scaling parameter is false. The LNSis heavy-tailed, but the tail fit to the datais
significantly lighter than found by fitting market data to a stationary stable distribution. This finding is consistent with the behavior of
daily financia market data over many monthsto years. The LNS may be useful in assessing market risk over long time frames without
overestimating extreme events. Although it is difficult to fit data to the LNS, because it is difficult to compute, it is easy to generate
random variables for ssmulation with the LNS model. We have presented the LNS as a five parameter distribution, but for risk analysis
over months, it may be adequate to simplify the model, setting the 8 and § parametersto zero. Although sums of random variables from
the LNSwill by the generalized central limit theorem convergeto a stable distribution, we do not expect that such behavior will be true of
market returns over intervals longer than a few minutes. We emphasize that the serial scaling parameters are not independent. Thethe
LNSdistribution also includes the special case of alognormally scaled Normal distribution by setting a = 2.

Our most important finding may be the concept that the market returns can be modeled as the product of a market volatility signal and
heavy-tailed noise. The dependent structure of the volatility signal component explains the clustering of volatility and can be studied
separately fromthe noise. Theideathat the noise, which is the random variation of logarithmic returns, is multiplied by volatility givesa
compound interest effectto prices. We have not considered it here, but the varying speed of transactions is a likely component of the
volatility parameter and should be a subject for future research.

Appendix

Outline a rapid method for estimating the stable scale factor, y. Equations (15) show the characteristic function written in the 1
-parameterizationrewrittenin polar form, r exp(i 6).

@

o) = e I wfﬁSJn(l)y tan(T}ltl +H6; e *1l

. 2i By Itlsgn(t) log (It (15)
pO =TT a=1
The absolute value of the characteristic functionfor all a.
[p(t)] = =" 1" (16)
Theempirical characteristic function derived from a data sample
10
ecf(t) = — ) et 17)

N =1
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When t and y are both equal one youwould have the characteristic function equal . This can be accomplished by dividing the sample
by the y for the sample. Equation (18) may be solved numerically.

n
Sren

k=1

1
- =t (18)

n

Another useful result follows from equation (19) given by Nolan for fractional absolute moments[3]. The fractional absolute moment
existsfor-1<p<a.

sec(”p)r(l p)cos( 00) [y cos5 (@) -1 xa

- -- péo) | «(a by tan (,Btan(T))

EIX|P = ; where §p = —— 8 —— (19)
- p) @

andé= Oandpe (-1, o

In the case where @ > 1, equation (20) existsasalimit as p —» 1. Since¢ is the mean of the distribution, the left hand side of the equation
can be estimated by the absolute mean deviation. Theright hand side of the equation is directly proportional to y; if @ and 8 are known
for the distribution, y may be estimated.

1
2y r(”a;l) cos( fp) cos = (a )
E|X -6] = ; Wherea > 1 (20)

Vg

References

[1]McNeil, A.J., Frey, R., Embrechts, P. Quantitative Risk Management, Concepts, Techniques, Tools, Princeton University Press 2005.

[2] Smith, E., Farmer, J.D., Gillemot, L., Krishnamurthy, S., Statistical theory of the continuous doubl e auction, Quantitative Finance, 3,

481-514.

[3] Nolan, J. (2009) Stable Distributions- Modelsfor Heavy Tailed Data, Birkhauser. Note: in progress, Chapter 1, availableat: http://academic2.american.edu/~jp-
nolan/stable/stable.html

[4] Feller,W., An Introduction to Probability Theory Vol. |1, John Wiley & Sons. 1971. p 504.

[5] Ibid. p 53.

[6] Bergstrdm, H. (1952). On someexpansionsof stabledistributions.Arkiv fir Matematik 2, 375-378.

[7] Embrechts, P., Kllppelberg, C., Mikosch, T. (2008) Modelling Extremal Eventsfor Insurance and Finance, Springer.

[8] For acloserlook at theintraday cycle, seethe demonstrationon the Market Data page of mathestate. The site has downloadableMathematica softwareand
notebooksas well asalink to the data so that othersmay reexaminethe results.

[9] Nolan, J.P., STABLE interfacesfor Mathematica, matlab, S-Plus. www.robustanalysis.com.



