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Presenter
Presentation Notes
I want to thank the program committee for giving me the opportunity to present at this very interesting conference.  This is a new experience for me.  I have been a clinical cardiologist for the last 36 years.  I am an expert in the time-series of heart beats, so you should expect a different approach to financial data.

I particularly want to thank John Nolan for the support he has given me over the past eight years.  The data the curves in this slide would be almost impossible to draw without his STABLE software, which I used for this presentation.

It is going to be difficult to cover everything I would like to present in fifteen minutes, so we have put a more detailed technical paper on the mathestate website and will provide the Mathematica algorithms to anyone who is interested.



Product of Two Variables

Stable random variable

Scaling variable that is not independent
Density close to lognormal

Market Model: Stable Mixture Distribution 
with varying scale factor
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I am going to try to convince you that financial market returns can best modeled as a stable mixture distribution.

It is the product of two variables.

One variable is very close to random variable from a stable distribution.

The other is a scaling variable, which has strong serial dependence and is a measure of volatility. 
Yet when we look at its histogram it has a density close to that of a lognormal distribution.



Stable Characteristic Function
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Limiting distribution of sums of i.i.d. RVs

Distribution of sums of stable RVs is stable with same α and β
scaling is by n^(1/ α)

a is the shape parameter a Œ (0, 2]
tail exponent (a < 2)

b is the skewness parameter  b Œ [-1, 1]
g  is the scale parameter g Œ (0, •)   
d is the location parameter d Œ Reals
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Stable distributions arise as the limiting distribution for sums of independent identically distributed random variables.  

They have the property that sums of their own random variables retain the same shape and skewness.
This makes them attractive for modeling financial returns.

This class of distributions includes the Normal, the Cauchy, and the Levy distributions, but for most forms there is not an explicit density or distribution function.

Phi of t is the stable characteristic function.

Alpha is the shape parameter of the distribution.  It is also the tail exponent of the distribution function, which is responsible for the scaling properties of stable distributions.  When alpha is two, we have a normal distribution.  For alpha less than two, the variance of the distribution is infinite.

Beta is the skewness parameter, ranging from minus one to one.  When beta is positive the distribution is skewed to the right and to the left when it is negative.

Gamma is the scale parameter.

Delta is the location parameter.  For alpha greater than one, delta is the expectation of the distribution.  When alpha is one or less the expectation is infinite.




Continuous Double Auction

Under controlled conditions CDA can output stable RVs
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Prices are formed in a continuous double auction.  The schematic shows a simplified version of this system.  Market and limit orders flow into the system at varying rates.  The limit orders are sorted and stored.  If market orders arrive in equal sizes they are matched at a price between the best limit buy and sell prices.  If over some short interval there is an excess of one type of market order, these orders are matched in the opposite order book and the price changes.  Research has shown that log price differences in the order books have heavy power tails.

This is a system than can generate stable random variables, if the conditions are right.  To get a stable output the tail structure of the order books would have to remain rather constant and the flow rate of market orders would require a constant distribution.  If the flow rate of orders into the system changes so will the scaling.  The alpha parameter of the output would be determined by the tail shape.  Beta would be determined by the relative numbers of buy and sell market orders.  There is nothing in this structure, however, that enforces these conditions.  It could also generate pure chaos.

The system is also subject to serial dependence, because there is immediate feedback of market prices to the traders placing orders.



SPY ETF Daily Closing Prices
Logarithmic Returns
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Now we will look at actual data.  I will show one minute data from the SPY exchange traded fund, but any actively traded security could be used similarly.  This security has an advantage in that it is very actively traded and the tick price of one penny is very small relative to the market price, so there is not much granularity in the data.

The upper graph shows the closing price from July 2007 through mid June.  Below are the one minute log returns.  They clearly demonstrate two common observations about financial returns.  Volatility varies over time and extreme returns tend to cluster.  
This now a very large sample with nearly 200,000 returns.



Autocorrelation Absolute Value Returns
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This is an autocorrelation plot of return behavior.  The lags on the x-axis cover fifteen days worth of one minute returns.  The blue line is the autocorrelation of the raw log return data.  Graphically there doesn’t appear to be any significant autocorrelation, but if you magnified the scale, you could see some.

The red line is the autocorrelation plot of the absolute value of the returns.  When we do this we are already factoring our return variable into sign and magnitude components, looking only at the magnitude. 

The spikes occur because of the larger magnitude of returns between the closing and opening prices of the concatenated data.  There is also a diurnal cycle of larger differences at the beginning and ending of the trading day.  Finally there is a slow decay of autocorrelation.  



Daily Stable Parameters

α β γ δ

1.8052 0.0370129 0.000483713 5.80342×10−8
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With the daily cycle in mind, we partitioned the data into days and performed a maximum likelihood fit to each day’s data. 

The numbers show the means for each stable parameter.  Alpha is about 1.8, beta or skewness is small, and delta is negligible.
The blue dots are the estimate of alpha for each day.  
The red lines show the 95% confidence intervals expected for the method, with a sample size of 391.  Theoretically errors to the maximum likelihood fit should be normally distributed.   These are not, but we know that this is not a pure random sample from the autocorrelation plot.

Over the nearly two year time frame of the data, there is no obvious time related change in alpha.



Stable Gamma 
a measure of volatility
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Here are the daily results for the gamma parameter, which is the scale factor of the stable distribution.  

There are two plots on the graph, the red is the stable scale parameter gamma, the black is the popular volatility index VIX for the S&P 500 futures.  The VIX scale is on the left.  The patterns are similar.

This is very clearly not a random signal.  Before the fall of last year there were regular rapid rises and slower decays of volatility.  Then last September, the plot looks like someone came along and cranked up the gain control.  Remember that the plot of the alpha parameter did not show any disturbance during this dramatic change in volatility, the likes of which have not been seen since the 1930s.




Volatility Autocorrelation
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Next we have the autocorrelation plot of the daily gamma parameter.  There is very strong and long lasting serial dependence.  The lag on the x-axis is now in trading days.  The serial dependence may persist for as long as 200 trading days.  I want to plant the suggestion that most of the serial dependent structure we see in our return data might be carried by this parameter, which is varying each minute of the day.



Autocorrelation Rescaled Returns
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Here is a new autocorrelation plot.  In red is the same plot of the absolute returns I showed before.  In black the returns have been rescaled by dividing each day’s returns by the stable scale factor for the day.  The slowly decaying inter-day dependency is gone, but the daily pattern now cycles around zero.  The daily cycle would be important for program traders, but it isn’t very important for long term risk analysis, so we will ignore it.




Stable Fits

α β γ δ

1.41694 1.26061×10−8 0.000387194 −3.73386×10−6
α β γ δ

1.79027 −3.25178×10−9 1.014 −0.00312431
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This is what happens when we analyze the whole data set.

On the left is the histogram of the raw log returns and the rescaled data are on the right.  The stable parameters for the fits are below the plots.

For the rescaled data, alpha is significantly higher, and gamma is close to one as we should expect, because we rescaled each day’s return by dividing by the gamma for the day.  Except for a spike of excess zero returns, the fit in the middle of the rescaled distribution is better than the fit to the raw data.  The picture on the left is typical also of what we see when we try a stable fit to daily returns.  The center of the empirical density has more mass than a pure stable density.

Note that the beta and delta parameters have small magnitude.



Stable Tail Fits

α β γ δ

1.41694 1.26061×10−8 0.000387194 −3.73386×10−6
α β γ δ

1.79027 −3.25178×10−9 1.014 −0.00312431
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This slide is a little complicated.  

The red and blue dots are log-log plots of the empirical distribution function.
The absolute value of the returns is shown on the x-axis. 

The red and blue solid lines represent the stable distribution calculated from the parameters.
The left tail probability is shown on the left and the right tail probability is shown on the right.  
When the tails of a stable distribution are turned around in this fashion the extreme tails become linear and parallel on the log-log plot.  
The two tails are superimposed because beta is close to zero.

The very light symmetric tail of the normal distribution in green is calculated from the mean and standard deviation of the data.

The raw data points on the left show the same thing that we see with stable analysis of daily data.  The data tails are lighter than those of the stable distribution found by maximum likelihood fitting, but heavier than the tails found for a Normal distribution.  The tail fit is clearly not very accurate!  An estimate of alpha = 1.42, will generate extreme events of much greater magnitude than the empirical data support.  At the end of the tails the estimated alpha predict extreme events that are an order of magnitude too large.

On the other hand the rescaled data show a very good fit on the tails; the rescaled data support the calculated alpha of 1.79.



Lognormal Density

Stable Characteristic Function

Lognormal Stable Characteristic Function
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We have observed the gamma parameter histogram to be close to that of a lognormal distribution.  

Even though the daily gamma parameters were not random, we decided to invent a distribution  that was the product of a stable random variable and an independent lognormal random variable.  We were particularly interested in its tail behavior.  We developed first the characteristic function of such a mixture distribution using the stable characteristic function and the lognormal density.  The resulting formula can be used with fast Fourier transforms to calculate the density.



Lognormal Stable Density

Lognormal Stable Distribution

lnscdf x, a, b, g, s, d =
0

•

scdf x, a, b, s, d l s, log g , s ‚ s

lnspdf x, a, b, g, s, d =
0

•

spdf x , a, b, s, d l s, log g , s ‚ s
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Although there is not an explicit formula for the stable distribution or density functions, we do have interpolated approximations which are fast and accurate.  We can use these in a program like Mathematica and do numerical integration as if they were real functions. 

The lognormally scaled stable distribution can be computed from, scdf, the stable distribution function, and lambda, the lognormal density function.  

Likewise the integral representation of a lognormally scaled stable density is shown below.  

These become five parameter distributions where alpha, beta, gamma and delta are from the basic stable distribution, with gamma represented as the median of our sample of scaling variables.  Sigma is standard deviation of the log of the scaling variables.  

For risk analysis of financial data, the functions could be simplified by setting beta and delta to zero.

When alpha is two we have the distribution of the product of a normal and lognormal random variable. 



Lognormal Stable Density
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Here are a few plots of what these densities look like.  The symmetric case for alpha 1.5 in blue is in the center.  The darker curve with the higher peak is the lognormal stable mixture density, in lighter blue is the stable distribution with the same stable parameters.  In red are similar curves for a maximally right skewed case. The darker colored curve is the lognormal stable and shows both a higher peak and less dramatic skewness.  The finding of more mass in the center is very much like the histogram of our raw return data when it is compared to a stable distribution. 



Lognormally Scaled Stable Distribution
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The behavior of the mixture is perhaps easier to visualize in a 3D plot.  These are views from the front and back of the same plot.  This is the alpha 1.5, right skewed case.  As the sigma parameter approaches zero, the distribution approaches the basic stable distribution as a limit.  As sigma increases the distribution becomes more peaked in the center and less skewed. For financial market data we find that the shape suggests a sigma between 0.3 and 0.6.



LNS Tail Behavior (CDF)
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The tail behavior is the important reason for exploring this distribution.  This is a log-log plot of the tail of the distribution functions alpha 1.5, for sigma, 0.5 and one.  The lognormally scaled stable distribution approaches the same tail exponent as the underlying stable distribution.  It takes longer for this to happen as sigma increases.  The stable curves are in blue and the lognormally scaled stable in red.  A mathematical proof of this behavior can be made with the same method used for the stable behavior, by using the stable distribution series expansion.

The implication of this tail behavior is that the mixture distribution has the same maximum domain of attraction as the underlying stable distribution.




Estimating Tail Exponent with GEV
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Our model for market behavior is the product of a stable random variable and a non-random scaling variable.  We know that our financial data are not independent mainly due to the scaling variable behavior.   However, the scaling variable does seem to be constrained, so that our mixture distribution should keep the same maximum domain of attraction as the stable random variable.  

The distribution of maxima (or negative minima) of stable random variables has an extreme value distribution, of the Frechet type, with the same tail exponent as the stable distribution.  

The graphic shows some calculations.  We divided the daily data into a morning session and an afternoon session of approximately equal size.  The return between days was included in the morning half.  The analysis was done taking the maximum and minimum returns for each session.   The results are not as good as we would hope; the reason appears to be clustering of extreme volatility last fall.  If the sample is divided into segments before and after last September, the alphas calculated by the method are closer to 1.8.  We only use about one half a percent of our data for each tail with this method.



Market Model
Product of  stable random and a non‐random scaling 
variable

This is a stable mixture distribution with a 
varying gamma parameter.

For financial data the scaling appears to be
constrained; the tail exponent of the 
distribution can be estimated.

The model solves the fitting problems 
associated  with the assumption of a 
stationary stable model.

It is possible to rescale daily data, taking 
advantage of the serial dependence in 
gamma.

If you can guess the future behavior of 
volatility, you can make some reasonable 
estimates of future event probability using 
stable  distributions.
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Our market model is the product of  stable random variable and a non-random scaling variable.

This is a stable mixture distribution with a varying gamma parameter.
	
For financial data the scaling variable is constrained; the tail exponent of the distribution can be estimated.

The model solves the fitting problems associated with the assumption of a stationary stable model.

It is possible to rescale daily data, taking advantage of the serial dependence in gamma; we show this in more detail on our website.
	
If you can guess the future behavior of volatility, you can make some reasonable estimates of future event probability using stable  distributions.



Lognormally Scaled Stable Distribution

Product of a stable random variable and a lognormal random 
variable.

It is computable.

The maximum domain of attraction of the distribution 
is determined by stable alpha.

Can be used for simulation.

Serial dependent structure can be added to the 
lognormal RV to better understand financial data.

For a more detailed technical paper on this presentation
visit  www.mathestate.com
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We have created a lognormally scaled stable distribution which is the result of the product of a stable random variable and a lognormal random variable.

It is computable.

The maximum domain of attraction of the distribution is determined by the stable alpha.

It can be used for simulation over long intervals where the serial dependent structure of volatility may not be so important.

We have placed a more detailed technical paper on mathestate.com.  I will make the data and algorithms available to anyone who is interested.

Thank you.
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