Appendix: Mathematica, Excel,
Regression, and Matrix Algebra

Introduction

The purpose of this appendix is to look inside the regression process so that the reader may see the computations
required to produce regression output. There are a variety of different ways to present many particular results. This
appendix derives results several ways to illustrate the different presentations. Readers should not view regression
output as computer magic. Enhanced understanding comes with knowing the equations and the calculations that take
place when one clicks on an icon or executes a regression command. (Even greater understanding comes from
understanding the formal proof of these equations, something that exceeds the scope of this work).

This material draws heavily upon two sources. One is Econometric Analysis, 5th Ed., by William H. Greene. The
other is The Classical Regression Model, lecture notes of Prof. Herman J. Bierens, http://econ.la.psu.edu/~hbierens/in-
dex.htm, of the Economics Department of the College of Liberal Arts at The Pennsylvania State University.

The example we use here elaborates the univariate case of Chapter 6 involving house prices and sizes.

The model is of the following form

Viza+px +te,i=1...,n

Where:
m y = the regressand or dependent variable to be explained
m X = the regressor or independent variable offering explanation
=« = intercept term where the function crosses the y axis (when Bx; = 0)
m 3 = coefficient to be estimated indicating the effect of x on y in the form of a slope
m e =error or disturbance term

The model is estimated under the following assumptions
1. The model is in the correct functional form, in this case linear;
2. E[€] =0 for all i, that is the mean of the disturbance terms is zero;
3. Var[ej] = o2, a constant, for all i, the property of homoscedasticity;
4. Cov[ei, € J-] = 0if i # j, meaning the error terms are independent of each other, not correlated with each other;
5. Cov[x;, €] = Ofor all i and j, meaning that the regressor and the disturbances are uncorrelated.

Although not strictly required, it is very common to futher assume
6. €~ N[0, o®], meaning that the error terms are normally distributed with a zero mean and a variance of o2

Assumptions #3 and #4, if they hold, mean that the data is independently and identically distributed, referred to as
"iid". The idea is that the error term is the sum of many small effects that are individually unimportant, random, both
positive and negative. Assumption #2 assumes that the sum of these have a zero effect on the system.

Assumptions #4 and #5 are hard to maintain for real estate. For instance, #4, the non-autocorrelation assumption,
assumes that there is no relationship between the error terms. Much financial data has evidence of autocorrelation.
Also, as valuation in real estate sales usually depend on recent sales of nearby properties correlation may be based on
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In[1]:=

proximity. There are tests to adjust results to consider autocorrelation and heteroscedasticity but these are beyond the
scope of this primer.

For reasons found deep in probability theory, if data is distributed normally it is by definition independent. Thus,
Assumption #6 is common. The point is that while normality is not required, independence is and when you assume
normality independence comes with it. In several places in the text we question the validity of this assumption for real
world data. It is mathematically convenient nonetheless.

It is our purpose here to consider the regression process in a critical way. Regression is very good for a host of
purposes. The general notion of conditional probability underlying regression is a powerful concept. But like all tools
it must be viewed in terms of its limitations and used correctly. To the extent assumptions cannot be maintained
results will be distorted. Conclusions based on distorted results obtained under incorrect assumptions can be wrong.

A note about notation: Convention in most texts is to represent algebraic equations in standard font and matrix alge-
braic symbols in BOLD and sometimes upper case. This conflicts with the Mathematica convention of user defined
variables being lower case and the capitalization of Mathematica built-in variable names and rountines. To replicate
the convention in most texts the Mathematica convention may be violated at times.

The organization of this appendix is as follows: Working in reverse (from bottom to top) we present the four compo-
nents of the Excel regression output in Table 6-7. We begin with the Residual Output, then the parameter table, then
the Analysis of Variance, concluding with the Summary. The reason for woking in reverse is that the creation of
variable names in Mathematica format is simplified. Where appropriate, for many results we show the algebraic
equation, the matrix algebra notation equivalent and the matching output performed by Mathematica's routines.

This appendix is provided to only to show the calculations underlying regression output, not interpret or explain the
output. For interpretation the reader is referred to Greene or any of the many fine econmetric or statistics text books
that cover regression.

$Post = If[MatrixQ[#1], MatrixForm[#1], #1] &

<< "MultivariateStatistics™; << "ComputationalGeometry™"

<< "HypothesisTesting™"

The Data

In[4]:=

Using our House Price example as familiar input, here is the same information we saw in Chapter 6:

ydata = {195000, 210000, 225000, 240000, 275000, 285000, 190000, 239000, 249000, 185000} ;
xdata = {1500, 1750, 1600, 1700, 1900, 1875, 1650, 1810, 1975, 1550} ;
houses = Transpose[ {xdata, ydata}]

Out[6]//MatrixForm=

1500 195000
1750 210000
1600 225000
1700 240000
1900 275000
1875 285000
1650 190000
1810 239000
1975 249000
1550 185000

We need the y values arranged as a vector named Y
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n7= Y = Transpose [ {Transpose[houses] [[2]]}]

Out[7]//MatrixForm=

195000
210000
225000
240000
275000
285000
190000
239000
249000
185000

We create a matrix (X) composed of a vector of 1's for the intercept (alpha) and vectors for each of the independent
values (xj)
Vector length of X must match that of Y.

ngl= X = Transpose[{Table[1l, {10}], Transpose[houses] [[1]]}]

Out[8]//MatrixForm=

1 1500
1750
1600
1700
1900
1875
1650
1810
1975
1550

PR RRRRRR

[y

We sometimes need the independent variables in the form of a vector that we will name "size".
nE= size = Transpose[{Transpose[X][[2]11}]

Out[9)//MatrixForm=
1500
1750
1600
1700
1900
1875
1650
1810
1975
1550

For equations developed below we need to set values for n (number of observations) and k (the width of X, one more
than the number of independent variables). This makes X an n x k matrix ( 10 x 2 in our example).

n1o= N = Length[Y]; k = Length[Transpose[X]];
n1= Print["The X matrix is ", n, "™ x ", K]

The X matrix is 10 x 2
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Descriptive Statistics

We will compute two descriptive statistics, the mean and the variance for each variable.
The mean may be computed using Mathematica's function or directly

Here is the mean of Y produced by Mathematic's built-in function

nz= Mean[Y]L[11]

outf12)= 229300
Using ¥ we get the same answer. This time we name the result for future use
PluseeY
3= py = ——— [[1]]
n

ouf13l= 229300

We follow the same procedure for the independent variables
Mean[X[[All, 2]]]

1731
Plusee X
n14)= px = ——— [[2]]
n
outf14]= 1731

Here are two presentations arriving at the same sample variance of the size vector , the sum of the squared differences
between individual values of the independent variables and the mean, all divided by n-1.

This is Mathematica's automated output
ns= N[Variance[size]][[1]]

out15)= 25137 .8

To produce it using an equation we must define X, a vector of the mean of X having a length equal to X
6= X=ux*Table[i,{i,n},{i,1}];
(x—X)?

This is the algebraic version, o

(Plusee (size-X)?)[[1]]

In[17]:=
n-1

out17= 25137 .8

The mean and the variance are known as, respectively, the first and second moment of the distribution. Other useful
measures are skewness and kurtosis, the third and fourth moments of the distribution. These, if significant, represent a
deviation from normality because a normal distribution has a skewness of zero (it is symmetric) and an excess kurtosis
of zero (it has light tails). Our Y data has a slight skewness and lighter than normal tails.

3= Skewness[Y] // N
Kurtosis[Y] -3 // N

out23= {0.231227}
out24)= {-1.14215}
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Regression

= Preliminary calculations, matrices and the normal equations

Crucial to the regression process is the creation of some special matrices.

For instance, the dot product of XT X must be a non-singular matrix. This means the XT X matrix must have an inverse. This property
leads to a unique solution of the minimization problem required to solve for the least squares estimators.

in2si= Transpose[X] .X

Out[25]//MatrixForm=

10 17310
17310 30189850

The above creates a matrix with the sum of the squares of the individual vectors in X on the diagonal and the sum of
the values of the independent variable on the off diagonal. Note that this also produces the coefficients of the "normal
equations”. These are simultaneous equations which, when solved, produce the estimated a and b of the regression.
The two equations in two unknowns, a and b, are shown as equations (4.1) and (4.2).

Zyi -na-+ ixi b

i1 i1
n n n
iny._ in a-+ szi b
i1 i1 i1

Let's unravel this notation one term at a time.

On the left hand side of equation (4.1), the sum of the dependent variables (observed house prices), 35 _; Vi is
nzel= (PluseeY) [[1]]

out26l= 2293000

n is simple enough. Note that it is the upper left term in the XT X matrix.

In271:= N

oute7= 10

The upper right and lower left (off diagonal) terms in the XT Xmatrix is the sum of the independent variables (size of houses), >7_; Xi.
This is the coefficient of b on the right hand side of equation (4.1).
nzgl= (Pluseesize) [[1]1]

outzgl= 17 310

Moving to equation (4.2), the term on the left hand side, >%_; X; Vi, is the sum of the product of each house price and its size
n2o)= (Transpose[Y].size) [[1]1]1[[1]]

out29]= 4009490000

On the right side of equation (4.2) we again encounter the term in off-diagonal of the XT X matrix, the sum of the independent variables
(size of houses), >7_; Xi. This time it is the coefficient of a.

o= (Pluseesize) [[1]]

outz0)= 17310
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Finally, the lower right element in the XT X matrix, the sum of the square of the size of each house, >1_; x?; is the coefficient of b in
equation (4.2).
ne1= (Transpose[size].size) [[1]1]1[[1]1]

ourz1)= 30189850

Inserting the values we have found for the terms in equations (4.1) and (4.2) produce two equations in two unknowns.

2293000=10a+17310b
4009490000 = 17310 a + 30189850 b

These can be combined into a pair of equations using Mathematica's Solve function to find the values for the a and b unknowns.
nE2= N[Solve[{(PluseeY)[[1l]] ==na+b (Pluseesize)[[1]], (Transpose[Y].size) [[1]][[1]] ==
(a (Pluseesize) +b (Transpose[size] .size) [[1]]1[[111)[[211}, {a, b}]1] 7/ TableForm
Out[32]//TableForm=

a-> -79095.6 b - 178.16
Students are often confused by the different notation styles used to present equations and mathematical identities. One
usually learns algebra and its symbols and then "graduates™ to matrix algebra and its notation form. In time one
recognizes the similarities between the two styles and moves easily between them. Until that time one may endure
much frustration.

For instance, equation (1.1) may be expressed in matrix notation as
Y=XBi+e
Where the symbols stand for vectors and matrices.

In general, above we have used both methods to present the normal equations and solve for their two unknown
coefficients. This is easy enough when there are only two equations and two unknowns. But algebra becomes
unwieldy in the multivariate case when the number of independent variables exceeds one. The multivariate case
involves multiple coefficients (b;, i=1...n) to allow for many independent variables (such as not only the size of the
house but the size of the lot the house is on, the number of bedrooms, etc.). This results in a system of many
unknowns with an equal number of equations that is too cumbersome for the algebraic format. Matrix algebra stream-
lines the notation in the multivariate case.

Above we said that the XT X must have an inverse. (X7 X)"lis the inverse of XT X.

3= N[Inverse[Transpose[X] -X]11]

Out[33]//MatrixForm=

13.3442 -0.00765117
-0.00765117 4.42008 x 10°®

Here are two ways Mathematica "picks" the lower right corner term. We name the second one "LwrRt" for later use in forming the t-
statistic for the estimated beta coefficient

4= N[Inverse[Transpose[X]-X11[[2, 2]]
ouza= 4.42008 x 107°
nEsi= LwrRt = N[ {0, 1} . Inverse[Transpose[X]-X]-{{0}, {1}}]

oupzsi- {4.42008 x 107°}
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The product of the inverse matrix and X T also produces a matrix. Using that matrix and the Y values produces a vector of parameter
estimates (a and b) for the regression:

nzel= N[Inverse[Transpose[X].X]-Transpose[X]]
Out[36]//MatrixForm=
1.86742 -0.0453722 1.1023 0.337186 -1.19305 -1.00177 0.719745
-0.00102104 0.0000839816 -0.000579031 -0.000137023 0.000746994 0.000636492 -0.000358027

n a
The parameter estimates are the solutions to a minimization problem. We present them as a vector, 6 = [ R ) The

elements in this vector should be compared with values for a and b reached with the normal equations above and
values for the intercept and "SF" shown in the parameter table of Table 6-7 of Chapter 6.

The matrix algebra equation for the parameter estimate vector is o= (XT X)L XTY
ne7= & = N[Inverse[Transpose[X] .X] .Transpose[X].Y]
Out[37]//MatrixForm=

( —79095.6)
178.16

Mathematica puts these in the form of a regression equation using the function "Fit"
npel= Fit[houses, {1, X}, X] // TraditionalForm

Out[38]//TraditionalForm=

178.16 x — 79095.6

Mathematica also uses LinearModelFit to produce an object that can be used for a variety of diagnostics, listed below

nop= ImF = LinearModelFit[houses, {1, x}, X]

outs0)= FittedModel || —79095.6 + «<19> X

1= ImF[""Properties']

outo1]= {AdjustedRSquared, AIC, ANOVATable, ANOVATableDegreesOfFreedom, ANOVATableEntries,
ANOVATableFStatistics, ANOVATableMeanSquares, ANOVATablePValues, ANOVATableSumsOfSquares,
BasisFunctions, BetaDifferences, BestFit, BestFitParameters, BIC, CatcherMatrix,
CoefficientOfvariation, CookDistances, CorrelationMatrix, CovarianceMatrix,
CovarianceRatios, Data, DesignMatrix, DurbinWatsonD, EigenstructureTable,
EigenstructureTableEigenvalues, EigenstructureTableEntries, EigenstructureTablelndexes,
EigenstructureTablePartitions, EstimatedVariance, FitDifferences, FitResiduals, Function,
FVarianceRatios, HatDiagonal, MeanPredictionBands, MeanPredictionConfidencelntervals,
MeanPredictionConfidencelntervalTable, MeanPredictionConfidencelntervalTableEntries,
MeanPredictionErrors, ParameterConfidencelntervals, ParameterConfidencelntervalTable,
ParameterConfidencelntervalTableEntries, ParameterConfidenceRegion, ParameterErrors,
ParameterPValues, ParameterTable, ParameterTableEntries, ParameterTStatistics,
PartialSumOfSquares, PredictedResponse, Properties, Response, RSquared,
SequentialSumOfSquares, SingleDeletionVariances, SinglePredictionBands,
SinglePredictionConfidencelntervals, SinglePredictionConfidencelntervalTable,
SinglePredictionConfidencelntervalTableEntries, SinglePredictionErrors,
StandardizedResiduals, StudentizedResiduals, VariancelnflationFactors}

Each of which can be separately researched. Example (follow link): AIC

The LinearModelFit object can be represented in standard form by wrapping it with “Normal”
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6= houseFit = Normal [ ImF]
TraditionalForm[%]
outa6l= - 79095.6 + 178.16 X

Out[47]/[TraditionalForm=

178.16 x — 79095.6

We pick the intercept and the parameter estimate, each, out of the vector of estimated parameters, @), and name them for later use.
n44p= a = {1, 0} .6
outs4= {-79095.6}

In[45]:= b]_ = {0, 1}.é
outssl= {178.16}

Before continuing, it is important to relate all of this to the SP distribution issues of Chapter 6. A central purpose of
regression is to predict the conditional mean. For our example that is the average house value conditioned upon
knowing some other fact, in our case the size of the house). This prediction is dependent on the accurate estimate of 3,
shown as the value of biabove. After performing the regression, our claim is that the value of a house goes up by
$178.16 for each added square foot. This is only correct if we have correctly estimated the mean itself. Outliers, as we
have said, have a significant affect on the mean. Thus, if the assumption of normality is violated by significant outliers
in the distribution the estimated regression coefficient(s) are distorted. For an excellent and quite technical explana-
tion of this situation using a real estate example see McCulloch (1998).

= Residuals

The regression report in Table 6-7 of Chapter 6 is reproduced here for comparison to the results below.

RESIDUAL OUTPUT

Observation Predicted Price Residuals
1 188145.0 6855.0
2 232685.0 -22685.0
3 205961.0 19039.0
4 223777.0 16223.0
5 259409.1 15590.9
6 254955.1 30044.9
7 214869.0 -24869.0
8 243374.7 -4374.7
9 272771.1 -23771.1
10 197053.0 -12053.0

Mathematica will also perform the above as part of diagnostics and analysis for Imf
ns1= resids = LinearModelFit[houses, {1, x}, x] [""FitResiduals']

ous1= {6855.04, -22685., 19039., 16223., 15590.9, 30044.9, -24869., -4374.67, -23771.1, -12053.}

The values predicted by the model, our estimated house values Y, are the product of the vector of independent variables and the vector
of parameters, Y=X6
o= ¥ = X.8
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188 145.
232685.
205961.
223777 .
259409.
254955,
214869.
243 375.
272771,
197 053.
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Our model is expected to differ from reality. The regression residuals, the error terms, are the result of subtracting the

predicted values (Y) from the actual (Y) values.

The equation for the error termsise=Y -Y =Y - X §
nsa= € =Y -X.8
Out[54]//MatrixForm=
6855.04
-22685.
19039.
16223.
15590.9
30044.9
-24869.
-4374.67
-23771.1
-12053.

Notice these are the same as the residuals
nisi= Chop [resids - %]

Out[55]//MatrixForm=

0]

OO O0OO0O0OO0OO0Oo

o

m Analysis of Variance

From Table 6-7 of Chapter 6 we reproduce for reference the analysis of variance table.

ANOVA

df SS MS F
Regression 1 7181109658 7181109658 15.6069079
Residual 8 3680990342 460123792.8
Total 9 10862100000

Mathematica will produce the same ANOVA table, parts of which will will derive individually below.
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nisei= LinearModelFit[houses, {1, X}, X] [""ANOVATable"]

DF SS MS F-Statistic P-Value

X 1 7.18111x10° 7.18111x10° 15.6069  0.0042327
Error | 8 3.68099x10° 4.60124x10°8
Total |9  1.08621x10%

out[56]=

We need a vector, Y in which each element is the mean of Y

ns7= Y = puy « Table[d, {i, n}, {i, 1}1;

The sum of the squares of the regression (known both as SSR and b? Sy) is (Y — V)T (Y -V).
nissi= SSR = Transpose[Y -Y]. (Y-Y)

Out[58]//MatrixForm=

(7.18111x10%)

The Sum of the Squared Errors (SSE aka Z[¢;?])
ns9:= SSE = Transpose([e] -€

Out[59]//MatrixForm=

(3.68099 x 107 )

The total sum of squares (known either as SST or Syy or (y; — §)°) is the dot product (Y — ﬂT (Y -Y).
nisor= SST = Transpose[Y - Y]. (Y -Y)

Out[60]//MatrixForm=

(10862100000 )

The Mean Square of the Regression (MSR) is the Sum of Squares of the Regression (SSR) divided by the degrees of freedom for the
regression (k-1).
ne1:= MSR = SSR / (k- 1)

Out[61]//MatrixForm=

(7.18111x10%)

The Mean Square of the Error terms (MSE) is the Sum of the Squared Errors divided by the degrees of freedom for the errors.
ine2)= MSE = SSE / (n - k)

Out[62]//MatrixForm=

(4.60124 x 10®)

The F-test for model utility (F-statistic) is the result of dividing the MSR by the MSE
ine3)= F = MSR / MSE

Out[63]//MatrixForm=

(15.6069 )

m The Parameter Table

From Table 6-7 of Chapter 6 we reproduce for reference the parameter table of the regression output. This provides, in
addition to paramater estimates, the standard errors, t-statistics and p values for each estimate.

Coefficients Standard Error t Stat P-value
Intercept -79095.58434  78357.96111 -1.009413507 0.342328491
Size 178.1603607  45.09751892 3.950557923 0.004232704
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Mathematica's parameter table produces the same information. We will compute these individually for the indepen-
dent variable only.

ne4:= LinearModelFit[houses, {1, X}, X] [""ParameterTable"]

Estimate Standard Error t-Statistic P-Value

ouiiel= 1 1 ~79095.6 78358. -1.00941 0.342328
x | 178.16 45.0975 3.95056  0.0042327

The standard error of the b coefficient uses SSE and the square root of the lower right element in (XT X)™. We will shortly see that
the term on the left, Sqrt[SSE/(n-k)], is also known as the Standard Error of the regression, S.

Ine5]:= Sp, = SQre[SSE / (n-K)] * SQrt[LwrRt]

Out[65]//MatrixForm=

(45.0975 )

The t-stat for the b coefficient test of the null hypothesis that 8 = 0 is the ratio of the coefficient to its stardard error. This is sometimes
referred to as a "signal to noise ratio". Depending on the asymptotic properties of the distribution we view the size of this measure as a
level of confidence that the value of our estimator did not occur by chance. A large value indicates that our coefficient provides more
"signal than noise"

nssl= &, = (b1 / (Sp,)) [[1111[1]]
outleel= 3.95056

= Summary Output

Finally, the Summary Output below is provided from the Table 6-7

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.813090489
R Square 0.661116143
Adjusted R Square 0.618755661
Standard Error 21450.49633
Observations 10

The sum of the squared differences between X and X (known both as Sy, and as Z(x; — X)2) is the product (x — X)".(x — X).
nis7i= Sxx = Transpose[size - X] . (size - X)

Out[67]//MatrixForm=

(226240 )

There are several ways to compute the R2value. the first is to have Mathematica compute it as an option in the Regression Report.
ineel= LinearModelFit[houses, {1, X}, X] [""RSquared"]

outeel= 0.661116

R? is the ratio of the sum of the squared regression to the total sum of squares.
9= Rsqd = SSR / SST

Out[69]//MatrixForm=

(0.661116)

Or it is 1 minus the ratio of the sum of the squared errors to the total sum of squares.
inf7op= 1 - (SSE / SST)

Out[70]//MatrixForm=

(0.661116 )
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Or it is the product of the estimated coefficient, b; and the ratio of the sum of the squared differences between X and X and the total
sum of squares, b? Sy, /Sy or b? S, /SST

In[71]):= (blz) * Syx / SST

Out[71]//MatrixForm=

(0.661116)

R? is also the square of the correlation coefficient

n72z= N[Correlation[xdata, ydata] 2]
out72)= 0.661116

The standard error of the regression (S) is the square root of the ratio of the SSE to the degrees of freedom (n-k):
n73l= S = SQre[SSE / (n-K)]

Out[73]//MatrixForm=

(21450.5)

Notice that the square of S is also the Mean Squared Error
7= TrueQ[S? = MSE]

out[74]= True

The standard deviation of the observed Y values, sy, may be computed by Mathematica's StandardDeviation function or as the square
root of the ratio of the total sum of squares to (n-1).
n7s= StandardDeviation[ydata] // N

ouf7sl= 34740.5
In[76]:= Sy =N[SqQre[SST/ (n-1)1[[1]11([[1]1]1]
ou76l= 34740.5

It is, of course, also the square root of the variance.
n771= Sqrt[Variance[ydata]] // N

out771= 34740.5

Dividing the square of s into the square of the standard error of the regression and subtracting the result from 1 gives the adjusted RZ:
n7el= LinearModelFit[houses, {1, X}, X] [""AdjustedRSquared']

out7)= 0.618756
niop= adjRsqd = N[1- (8% /Sy?) ]

Out[79]//MatrixForm=

(0.618756 )

m Alternate presentations

Here are some other ways to use Mathematica to display regression output.
We can produce all the output options at once.
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ngop= LinearModelFit[houses, {1, X}, X][{""ANOVATable", "ParameterTable", "FitResiduals",
"SinglePredictionConfidencelntervalTable", ""ParameterConfidenceRegion'}]

DF

out[80]= {X 1
Error | 8
Total | 9

Estimate
1 -79095.6 78358.

x | 178.16

Observed Predicted

188145.
232685.
205961.
223777.
2594009.
254 955.
214 869.
243 375.
272771
197053.

195000
210000
225000
240000
275000
285000
190000
239000
249000
185000

SS

7.18111x10°
3.68099 x 10°

MS

7.18111x10° 15.6069
4.60124%108

1.08621 x 10'°

45.0975
16223., 15590.9, 30044.9, -24869., -4374.67, -23771.1, -12053.},

F-Statistic P-Value

Standard Error t-Statistic P-Value
-1.00941 0.342328

0.0042327

Standard Error Confidence Interval

247924
225138
23260.2
225409
237534
23416.

227921
227778
250444
239325

{130974., 245316.}
{180768., 284602.}
{152323., 259599.}
{171798., 275756.}
{204634., 314184}
{200958., 308952}
{162310., 267428.}
{190849., 295900.}
{215019., 330524.}
{141865., 252241}

0.0042327 |

, {6855.04, -22685., 19039.,

, FittedModels ParameterEllipsoid]|

{-79095.6, 178.16}, {234000., 11.6584}, {{-1., 0.000573371}, {-0.000573371, —1.}}]}

We can name the errors and predicted values in separate lists and plot them together to get a visual look at whether
there is a relationship such as bigger errors for larger predictions.

In[83l:= errors =

Out[84]//TableForm=

6855.04
-22685.
19039.
16223.
15590.9
30044.9
-24869.
-4374.67
-23771.1
-12053.
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LinearModelFit[houses, {1, X}, x]["FitResiduals"];
% // TableForm
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nesl= predValues = LinearModelFit[houses, {1, x}, X] [""PredictedResponse’] ;
% // TableForm
Out[86]//TableForm=
188145.
232685.
205961.
223777.
259409.
254 955.
214 869.
243375.
272771.
197053.

neoj= ListPlot[{errors, predValues}, Joined » True, AxesOrigin -» {0, Min[errors]}]

250000 -
200000 -
150000 [
Out[90]=

100000 |

50000 -

2 4 6 8 10
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