
Why Fat Tails Matter - A Primer 
 
Introduction 
 
There is a joke about State Lotteries that says: "The Lottery is a TAX on people who are bad at 
math". Sadly, this is true.  It is also a regressive tax because it takes a bigger portion of the 
income of poor people who typically are the least educated and therefore the least able to 
determine just how bad a financial opportunity the lottery is. 
 
The math is really not all that difficult. It requires the understanding of a simple concept: The 
expectation of an uncertain outcome. Here is a simple example. Suppose you find yourself in a 
situation where there are three possible outcomes, A, B, and C, each with a different reward.  
Suppose I, being a benevolent and omniscient dictator, know and tell you in advance the exact 
probability of each outcome and I give you the opportunity to repeat your choice many, many 
times.  If you take each reward and multiply it by each probability then add up the results you 
have what is known as the mathematical expectation. Here is an example: The payoffs are $10, 
$20, and $50; the probabilities are, respectively, 60%, 30% and 10%. The expectation is $6 + $6 
+ $5 = $17. 
 
Now suppose I charge you a fee to play this game. How much, given that you can play it 
repeatedly as often as you like while the rules remain the same, are you willing to pay?  This 
little thought experiment is at the heart of the lottery joke.  Ignoring the blizzard of possible ways 
they allow you to win, let's just take the one that gets headlines.  Suppose the jackpot is 
$10,000,000. The lottery people announce the number of tickets sold and the odds of winning. 
Suppose the odds are one in 24,000,000, a decimal fraction of .00000004166667. Multiply the 
payoff times the probability and you have just less than 42 cents. What is the price of a lottery 
ticket? 
 
The simple conclusion is that people who buy lottery tickets are overpaying for the opportunity. 
This is the result of failing to understand the notion of an expectation. There is even a germ of 
common sense in it: If someone offers you the chance to win a dollar based on the flip of a fair 
coin, DON'T PAY MORE THAN 50 CENTS FOR THE CHANCE!!! 
 
Of course, life is more complex than flipping coins and omniscient dictators are hard to find, but 
the basic reasoning does not change.  Many things in life are examined statistically and for the 
past 350 years a very useful and powerful tool has been used for such inquiries.  It is called a 
probability distribution function (pdf) and it looks like this: 
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All this does is provide a graphical representation of all the outcomes that can happen, arranged 
in order of the product of their probabilities times their payoffs. The peak occurs where the most 
likely is located, which on the x-axis is the expectation.  For this illustration the expectation is 
zero. There is a dispersion of possibilities around the expectation that accounts for the area under 
the curve that is away from the center. Below is a case with the same expectation but less 
dispersion, also known as variation. Literally and in formal statistical meaning the area under the 
curve represents the variance from the expectation.  This may be viewed as how likely or 
unlikely it is that our expectations will be met. 
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These two curves have been created using the mathematics of the famous "bell curve", also 
known as the normal distribution. As important and powerful as this technology is, it has 
limitations. Several technical matters that we won't consider here constrain the use of it. First, it 
is symmetrical, meaning that there must be an equal number of outcomes on either side of the 
mean (another term for the expectation). Second, it rapidly descends to the x-axis creating 
something that statisticians refer to as a particular kind of "asymptotic behavior".  This rapid 
decline precludes finding or considering a large number of outcomes of any size or a small 
number of large outcomes that are located far from the expectation. Such things are known as 
"outliers".  Another way of saying this is that the normal distribution is "compact" around the 
mean. All observations must be within a certain range of the mean to permit the normal 
distribution to apply accurately. 
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Nature, while often exhibiting normal behavior, also shows us many other cases where outliers 
are persistent, meaningful and may dominate the probability calculation.  Until very recently, the 
computation of probabilities for non-normal distributions has been difficult or impossible.  This 
difficulty has been recently overcome and the study of outliers or conditions in which outliers 
play a significant role is now within reach. 
 
The presence of outliers creates a condition known as "Heavy Tails" or "Fat Tails". This means 
that, because there are observations far from the mean and/or those observations are perhaps 
individually large, the tails DO NOT rapidly descend to the x-axis, rather they extend some 
distance from the expectation before approaching the x-axis as in the example below. 
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The stable approach to data 
 
We will explore and illustrate this with a particular set of data. Here are 1000 observations of 
reported expense/vacancy ratios (EVRs) for apartment buildings in San Francisco.  The first few 
look like this. 
 

0.31745
0.344479
0.334084
0.321322
0.274807
0.322092  

 
It is useful to look at the range of the observations and plot them. We see that most of them range 
between .25 and .4 
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When we view the data in histogram form we note that (a) the distribution of expense ratios is 
not symmetric and (b) that the distribution has a long right tail. 
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A special and useful property of the normal distribution is that you can create a pdf for it by 
knowing only the mean (expectation) and variance, known as the first two "moments" of the 
distribution. Assuming (naively) for now that the expense ratio observations are distributed 
normally, we can create and plot the pdf for such a distribution from its first two moments.  
 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

2

3

4

5

6

Normally distributedEVRs

 

© 2002 Roger J. Brown 



 
A companion and equally important tool is a Cumulative Distribution Function (CDF) that 
permits us to calculate the portion of the distribution that is contained under just a fraction of the 
pdf. The practical meaning of this is to permit us to compute probabilities of particular events. 
 
With the above, continuing to believe that our distribution is normal, we can, using the CDF, 
assess the probability that any specific reported expense ratio will occur.  Some examples of this 
are shown below. 

evr PHevrL
0.25 0.0839818
0.3 0.288662
0.35 0.604179
0.4 0.861185
0.45 0.971748
0.5 0.99682  

 

 
This says that 99.7% of our EVR observations are at or below 50% while only 08.4% of them are 
at or below 25%.  Thus, about 91% of them are between 25% and 50%. If we are given a 
capitalization rate that is based on an evr of 30% we see from the table above that only 28.9% of 
the buildings have an evr that low or lower.  From this we can make a subjective assessment of 
the reliability of the capitalization rate.  But how reliable is the model we employed to make this 
claim? 
 
Two new terms are needed at this point. "Skewness" describes the extent to which the 
distribution is non symmetrical. "Kurtosis" measures the fatness of the tails. A check of the EVR 
distribution shows it is not normal because normal distributions are symmetrical (skewness = 0) 
and have "skinny" tails  (kurtosis excess = 0).  Neither is the case for this data. 
 
Skewness 0.221308  
Kurtosis Excess 1.07313  
 
The stable approach to data 
 
The assumption of normality imposes a set of strong conditions on the data.  Included in these 
are symmetry, thin tails and a finite variance. Relaxing the normality assumption permits a better 
view of the data and, hopefully, the world from which it is drawn.  The normal distribution is a 
special case of the family of Stable-Paretian (SP) distributions discussed at length elsewhere.  SP 
distributions are characterized by four (4) parameters.  One of these is α, the index of stability, 
which provides a measure of tail behavior.  Another is β, a skewness parameter. For the (special) 
normal case α = 2 and β = 0. 
 
Because of recent technological developments, we can now estimate Stable parameters.  For our 
data we see that α is below 2 and β is nearly 1, meaning that it has a heavy right tail.  This means 
that there is more probability in the right (higher in this case) end of the distribution.   
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α = 1.87561 β = 0.36048 γ = 0.0400139 δ = 0.334212 
 
Let's change tactics and deal with dataset under the assumption that it has a Stable distribution 
that is not normal. 
 
Notice the similarity in the shape of the histogram of the actual data and the shape of a plot of the 
Stable pdf. Contrast that with the assumption of normality made earlier as shown in the far right 
plot below.  The assumption of normality distorts our view of the data away from its actual 
shape.  Note below how much better the SP distribution matches the histogram than the normal 
distribution does. 
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Comparing expense ratio probabilities provides the following differences in our estimation of 
how likely a building expense ratio is.  In this case the normal assumption was not far from the 
stable estimates. 
 

evr Normal Prob Stable Prob Difference
0.25 0.0839818 0.0731309 0.0108509
0.3 0.288662 0.281732 0.00692929
0.35 0.604179 0.620898 - 0.0167186
0.4 0.861185 0.875039 - 0.0138543
0.45 0.971748 0.969291 0.00245782
0.5 0.99682 0.990765 0.00605495  

 
Recall the estimates stable parameters included an α that was close to the normal. This is why 
our normal assumption produced estimated probabilities reasonably close to those calculated 
with parameters from our stable fit. 
 

EVR stable fit = {1.87561, 0.36048, 0.0400139, 0.334212} 
 

But let's assume we encounter a market in which α is considerably below 2. We now create a 
dataset for such a market using a random number generator.  We assume this market has an α = 
1.5 
 
random number stable fit = {1.5364,0.356897,0.0400721,0.331344} 

 
Applying our convenient normality assumption produces the familiar bell-shaped plot 
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But the histogram indicates that this data is shaped rather differently. 
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And a plot of the stable pdf looks more like the histogram than the normal pdf does. The reason 
for this is the superior fit of the stable pdf that considers the skewness and kurtosis that normal 
excludes. 
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Placing them on the same plot or side-by-side is sobering 
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Calculating the probabilities both ways and computing the difference shows the magnitude of the 
error of the normal assumption. 
 

evr Normal Prob Stable Prob Difference
0.25 0.224803 0.093159 0.131644
0.3 0.36868 0.318036 0.0506444
0.35 0.534016 0.641199 - 0.107183
0.4 0.693603 0.843466 - 0.149864
0.45 0.822987 0.925419 - 0.102432
0.5 0.911095 0.957677 - 0.0465825  

 
Returning to our original metaphor of a game with known probabilities, suppose it became 
known that I, as benevolent and omniscient dictator (or just your financial advisor), provided you 
with probabilities that I calculated based on the assumption of normality.  Suppose that you 
accepted those numbers and on that basis decided the amount you were willing to pay to enter 
the game.  Then suppose that someone else came along with the ability to estimate parameters 
under a fat tailed, stable assumption?  The table above should show you that the price you should 
be willing to pay is very different. 
 
Stretching our lottery metaphor to the limit, we might conclude that the assumption of normality 
is a tax on people who can't estimate stable parameters. 
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